Ocular Tilt Reaction

Tzu-Pu Chang, MD Department of Neurology, Taichung Tzu Chi Hospital Tzu Chi University

Bender JA, et al. Current Biology 2009

Utricular-Ocular Reflex and Vestibular Perception

Frohman TC, et al. Neurology 2008

Ocular Tilt Reaction (OTR)

- Tilt of subjective visual vertical (SVV)
- Ocular torsion (OT)
- Skew deviation (SD)

SVV

Head tilt

- Decussation: mid- to-lower pons
- Lesion below decussation: Tilt toward the lesion side (ipsiversive OTR)
- Lesion **above** decussation: Tilt away from the lesion side (contraversive OTR)
- Thalamus or cortex lesion: ipsi- or contra-versive SVV

Brandt T, et al. Nature Reviews Neurology 2017

Subjective Visual Vertical (SVV)

Zwergal A, et al. Neurology 2010

Subjective Visual Vertical (SVV)

- The most sensitive sign in OTR
- May be abnormal in both peripheral and central (brainstem, cerebellum and cortex) lesions
- Good for differentiating structural vestibular lesion from functional dizziness (e.g. PPPD) or non-vestibular dizziness (e.g. drug-related dizziness)
- SVV only cannot differentiate central from peripheral lesion.
- SVV plus other clinical tests (e.g. head impulse test) can help identify central lesion.
- SVV is an exclusive clinical test for vestibular perception.

Sensitivity for brainstem lesions: SVV > ocular torsion > skew deviation > all OTR signs

Brandt T. Vertigo: Its Multisensory Syndromes 1999

OTR in cerebellar lesions

- In 31 patients with acute unilateral cerebellar infarction:
- 100% had SVV tilt
 - 74% contraversive tilt VS 26% ipsiversive tilt
- 55% had ocular torsion (OT)
 - 42% contraversive OT VS 13% ipsiversive OT
- 26% had skew deviation (SD)
 - 19% contraversive SD VS 6% ipsiversive SD

the SVV]						
Tilts of the SVV [<i>N</i> (%)]	Middle cerebellar peduncle	Dentate nucleus	Pyramid of vermis	Uvula	Tonsil	Flocculus	Nodulus	Biventer lobule	Inferior semilunar lobule
lpsiversive 8 patients Contraversive 23 patients	6 (75) 12 (52)	3 (38) 2I (9I)	3 (38) 9 (35)	3 (38) 9 (35)	5 (63) 16 (70)	3 (38) I (4)	0 2 (9)	5 (63) 7 (30)	4 (50) 3 (I3)
									Bajor B

 Table 2
 Number and percentage (in brackets) of the cerebellar lesions in patients with ipsiversive or contraversive tilts of the SVV

Abnormal in acute, unilateral, and structural lesions (peripheral or central)

Table 2 Applications of SVV measurements in clinical practice			SVu (°)				Me´nie`re's disease:		
			Moan	80	Bange		 Acute stage: 64% SVV tilt 		
			Iviean	30	naliye		 Interictal stage: 9% SVV til 		
Applications for SVV neasurement	Pathologic SVV deviation	Normals Neurectomies	-0.1	0.6	-1.8-1.0	25			
Detection of unilateral		Preop.	0.0	1.9	-5.2-3.0	15	right A		
raviceptive (mainly stolithic) pathway damage		Acute	12.4*	5.1	4.8-21.4	15			
		Vest.NE	13.0*	5.8	4.8-21.4	10	5		
Vestibular neuritis*	>90%	Coch-vest.NE	11.0*	3.2	7.4-15.0	5	2.73		
Vestibular pseudoneuritis ⁷	>90%	Chron.	1.3*	2.0	-2.0-6.4	26	0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 15 d^{-1}		
Wallophorg syndroma ⁸	<u>\90%</u>	Vest.NE	0.4	1.2	-1.4-2.0	8	-5-		
Wallenberg Syndrome	29078	Coch-vest.NE	1.8*	2.1	-2.0-6.4	18			
Internuclear	>90%	Neuronitis	6.8*	7.1	0.2-33.0	20	_10 - ■ left		
ophthalmoplegia		Zoster	10.4*	5.8	3.2-17.2	4	_15 L		
Midbrain damage ¹	>90%	BPPV	0.2	0.8	-1.2 - 2.4	19			

Zwergal A, et al. Neurology 2010 Böhmer A, et al. J Vestib Res 1995 Kumagami H, et al. Otol Neurotol 2009

SVV tilt gradually returns to normal level after acute stage

SVV is one of the parameters of vestibular compensation

 In chronic stage, SVV is not sensitive to detect vestibular lesions
 ANY WAY to enhance SVV sensitivity for chronic vestibulopathy?

SVV with lateral head tilts

- A (Aubert) effect: SVV lies on the same side as head position
- E (Müller) effect: SVV lies on the opposite side of head position

In Healthy people, 0° - 60°: E effect 60° - 90°: A effect

Kheradmand A, Winnick A. Front Neurol 2017

Clinical Application for SVV with lateral head tilts

VertiSVV, Zehnit, Shanghai

Gyroscope inside the SVV VR goggles

Wang CH, et al. Tzu Chi Medical Journal 2021

SVV with lateral head tilts in chronic vestibulopathy

- 2E: E-effect at bilateral head tilts;
- 2A: A-effect at bilateral head tilts;
- 1A1E: A-effect at one-side head tilt and E-effect at the other side

Head tilt 30°	Number of cases	2A	1A1E	2E
Healthy controls	30	0 (0)	2 (6.7%)	28 (93.3%)
Bilateral vestibulopathy	6	3 (<mark>50%</mark>)	1 (16.7%)	2 (33.3%)
Unilateral vestibulopathy	14	1 (7.1%)	5 (35.7%)	8 (57.1%)

- In head tilt for 30°, most healthy people (>90%) have bilateral E-effects.
- About 50% of patients with bilateral vestibulopathy had bilateral A-effects, implicating loss of bilateral utricular functions.
- Around 35% of patients with unilateral vestibulopathy had one-side A-effect, but the side of of A-effect is not always compatible with the lesion side (ipsilesional in 3 and contralesional in 2)

SVV imprecision (variability) and dizziness

SVV imprecision (variability):

- The **standard deviation** of SVV values in repeated trials
 - Noise of vestibular or somatosensory signals
 - Disturbance of multisensory integration

Ocular Torsion

- Less sensitive than SVV
- Abnormal in Acute Peripheral or Central vestibulopathy
- Normal in thalamus, subcortical or cortical lesions.
- **Objective** sign, but cannot be observed by naked eyes

Absolute ocular torsion using fundus photography

Definition of Ocular torsion

• $\vartheta ex > 12.6^{\circ}$, or $\vartheta in < 0^{\circ}$, or $\vartheta ex - \vartheta in > 8.8^{\circ}$

Relative ocular torsion during head tilt: Video Ocular counter-roll (vOCR)

Otero-Millan J, et al. Acta Otolaryngologica 2017

Iris pattern

vOCR in peripheral vestibulopathy

Ocular Vestibular-evoked Myogenic Potential (oVEMP)

• oVEMP can detect some chronic vestibulopathies

- In chronic stage of vestibular neuritis, 60% abnormal
- In vestibular schwannoma, 69% abnormal

Fife T, et al. Neurology 2017 Weber K, et al. 2015

Skew Deviation

- Less sensitive than SVV or ocular torsion......BUT
- It can be an adjunctive sign for differentiating central or peripheral disorders.
- HINTS = <u>H</u>ead <u>I</u>mpulse test, <u>N</u>ystagmus and <u>T</u>est of <u>S</u>kew

Test of skew deviation: alternate cover test

- Skew deviation occasionally appears in peripheral vestibulopathy, but the peripheral skews are **small and transient**.
- Central skews are large and enduring.
- In clinical practice, skew deviation is a central sign.

Table 4: Pooled analy	vsis of key bedside	diagnostic predic	tors of stroke in pa	atients with acute	vestibular syndrom	e*
Bedside diagnostic predictor*	No. of studies reporting data on total/peripheral/ central causes	No. of patients, with peripheral/ central causes	Sensitivity (95% CI†)	Specificity (95% CI†)	Negative likelihood ratio (95% CI†)	Positive likelihood ratio (95% Cl†)
Normal result of horizontal head impulse test						
All central causes ^{6,10,11,33}	4/2/4	65/152§	0.85 (0.79–0.91)	0.95 (0.90–1.00)	0.16 (0.11–0.23)	18.39 (6.08–55.64)
PICA or SCA stroke ^{6,10,33}	3/1/3	25/72 (68 PICA)	0.99 (0.96–1.00)	_**	0.01 (0.00-0.10)	_**
AICA stroke ^{6,10}	2/1/2	25/13	0.62 (0.35–0.88)	_**	0.40 (0.20–0.80)	_**
Direction-changing nystagmus ^{+6,9-11,27,28}	6/3/6	83/239§	0.38 (0.32–0.44)	0.92 (0.86–0.98)	0.68 (0.60–0.76)	4.51 (2.18–9.34)
Skew deviation ^{6,11}	2/2/2	65/119§	0.30 (0.22–0.39)	0.98 (0.95–1.00)	0.71 (0.63–0.80)	19.66 (2.76–140.15)

Hypothesis: "Rabbit in the Brain"

In the lateral-eyed rabbit, a lateral tilt (one ear up and the other down) leads to the eyes rotating around the *roll axis* with one eye rotating down and the other eye rotating up (a physiological skew as part of the OTR (Ocular Tilt Reaction))

Zee DS. J Vest Res 1996 Courtesy of Prof. David Zee

Head Tilt

- The easiest to observe
- Few study about it
- Mechanism:
 - Vestibulospinal tract
 - Spinocerebellar tract
 - Compensation for ocular torsion or skew deviation
 - Compensation for illusive body/head tilt
- Medulla lesions usually cause the most apparent head tilt

Take Home Message

In OTR family, all the four members have different clinical values.

SVV	SVV is one of the most sensitive sign for acute central or peripheral vestibular lesion.
	SVV with lateral head tilts may help diagnose chronic vestibulopathy.
	SVV with lateral head tilts can assess vestibular perception and sensory integration.
Ocular torsion	Ocular VEMP can detect the function of utricular-ocular reflex.
	vOCR can evaluate the vestibular compensation of utricular-ocular reflex.
Skew deviation	Skew deviation is less sensitive, but is usually a central sign.
Head tilt	Head tilt is the easiest to observe.